Autonomous Navigation Using Deep Reinforcement Learning in ROS
نویسندگان
چکیده
منابع مشابه
Autonomous vehicle navigation using evolutionary reinforcement learning
Reinforcement learning schemes perform direct on-line search in control space. This makes them appropriate for modifying control rules to obtain improvements in the performance of a system. The effectiveness of a reinforcement learning strategy is studied here through the training of a learning classz$er system (LCS) that controls the movement of an autonomous vehicle in simulated paths includi...
متن کاملAutonomous UAV Navigation Using Reinforcement Learning
Unmanned aerial vehicles (UAV) are commonly used for missions in unknown environments, where an exact mathematical model of the environment may not be available. This paper provides a framework for using reinforcement learning to allow the UAV to navigate successfully in such environments. We conducted our simulation and real implementation to show how the UAVs can successfully learn to navigat...
متن کاملAutonomous Quadrotor Landing using Deep Reinforcement Learning
Landing an unmanned aerial vehicle (UAV) on a ground marker is an open problem despite the effort of the research community. Previous attempts mostly focused on the analysis of hand-crafted geometric features and the use of external sensors in order to allow the vehicle to approach the land-pad. In this article, we propose a method based on deep reinforcement learning that only requires low-res...
متن کاملReinforcement Learning: Mdp Applied to Autonomous Navigation
The problem of autonomous vehicle navigation between lanes, around obstacles and towards a short term goal can be solved using Reinforcement Learning. The multi-lane road ahead of a vehicle may be represented by a Markov Decision Process (MDP) grid-world containing positive and negative rewards, allowing for practical computation of an optimal path using either value iteration (VI) or policy it...
متن کاملNavigating Intersections with Autonomous Vehicles using Deep Reinforcement Learning
Providing an efficient strategy to navigate safely through unsignaled intersections is a difficult task that requires determining the intent of other drivers. We explore the effectiveness of Deep Reinforcement Learning to handle intersection problems. Using recent advances in Deep RL, we are able to learn policies that surpass the performance of a commonly-used heuristic approach in several met...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Artificial Intelligence and Machine Learning
سال: 2021
ISSN: 2642-1577,2642-1585
DOI: 10.4018/ijaiml.20210701.oa4